Always true	Sometimes true
Statement A When I entered numbers like 02.6 on my calculator, the number displayed was 2.6. Also true for: $03 \rightarrow 3$ $028 \rightarrow 28$ $00.57 \rightarrow 0.57$ We couldn't find any for which this wasn't true.	Statement C When you put a zero on the right hand side of a whole number, the number that was in the units position moves into the hundreds position and so on. $5 \rightarrow 50$ $26 \rightarrow 260$ $704 \rightarrow 7040$ But for numbers like 2.3, adding a zero on the right does not change the size of the number. I entered 2.30 then pressed = and my calculator displayed 2.3.
Statement B When you put a zero in the middle of a number like 54, the 5 that was in the tens position moves into the hundreds position. This statement is also true for numbers like 5.4 because it could become 50.4 or 5.04. We couldn't find any for which this wasn't true.	Statement E This is like Statement C. When you multiply a whole number by 10, you get a number with a zero at the right hand end of the number. $5 \times 10 = 50$ $26 \times 10 = 260$ $704 \times 10 = 7040$ But when I entered 2.3 × 10 on my calculator, the answer was 23.
Statement D We think that 2.60m suggests that you have been able to measure more accurately, to hundredths of a metre, rather than tenths of a metre as does 2.6m. We couldn't find any for which this wasn't true.	Statement F This is true for numbers like 0.4 ÷ 10. Numbers like 0.04 ÷ 10 = 0.004 you put an extra 0 just after the decimal point. But 2.4 ÷ 10 = 0.24. The statement is not true for decimal numbers greater than 1.
Statement H I changed the fractions given into decimals and I got 0.1, 0.01, 0.001. I also tried changing the numerator 1 to 2, 3,, 9 and it was true. We couldn't find any for which this wasn't true.	Statement G We tried entering lots of numbers like 000327.760000 into our calculators then pressing = and they showed 327.76 But when we entered numbers like 000327760000, the calculator showed 327760000 because the zeroes on the right hand side didn't disappear.

Card set A – Always true or Sometimes true?

 A 2.6 → 02.6 If you put a zero at the left hand end of a number, it doesn't change the size of the number. 	B 54 → 504 If you put a zero in the middle of a number, it changes the size of the number.
c $5 \rightarrow 50$ If you put a zero at the right hand end of a number, it changes the size of the number.	D 2.6m and 2.60m If you put a zero at the right hand end of a decimal measurement it means it is more accurate.
E 60 × 10 = 600 When you multiply a number by 10, you put a zero at the right hand end of the number.	F 0.4 ÷10 = 0.04 When you divide a decimal number by 10, you put a zero just after the decimal point.
G OOO80.304000 When you type a number into a calculator and press = the zeroes at the beginning and end all disappear.	H <u>1</u> , <u>1</u> , <u>1</u> , <u>1</u> , <u>1</u> , <u>1</u> , When you change this list of fractions to decimals, you get the same number of zeroes in the decimals as you do in the fraction.

Maths4Life